At the Money Forward Option  Definition
 Accounting, Taxation, and Reporting

Law, Transactions, & Risk Management
Government, Legal System, Administrative Law, & Constitutional Law Legal Disputes  Civil & Criminal Law Agency Law HR, Employment, Labor, & Discrimination Business Entities, Corporate Governance & Ownership Business Transactions, Antitrust, & Securities Law Real Estate, Personal, & Intellectual Property Commercial Law: Contract, Payments, Security Interests, & Bankruptcy Consumer Protection Insurance & Risk Management Immigration Law Environmental Protection Law Inheritance, Estates, and Trusts
 Marketing, Advertising, Sales & PR
 Business Management & Operations
 Economics, Finance, & Analytics
 Professionalism & Career Development
 Courses
Back to: INVESTMENTS TRADING & FINANCIAL MARKETS
AttheMoney Forward Option Definition
An option is At the money (ATM) when the options strike price is exactly the same as the price of the underlying security. Both call and put options can be at the money. If an option is at the money, that means it doesnt have any intrinsic value, it only has time value. For example, stock X is at the money, the current share price and the strike price of stock X is $100. The seller wont make any profit by exercising the option, however, an upward move in stock price will give the option value. When options are at the money, the trading activity tends to rise.
A Little More on What is an AttheMoney Forward Options
The relationship between the strike price of an option and the underlying securitys price can be of three types at the money (ATM), in the money (ITM), and out of the money (OTM). This relationship is also called moneyness. Options having intrinsic value is in the money and options without any intrinsic value is out of the money. At the money options do not have intrinsic value at the moment, profits wont be earned if exercised, but still, it has time value that means there is still time before they expire. So, in the future, there are chances to earn a profit from this option. The intrinsic value of a call option is the underlying securitys current price minus the strike price. The intrinsic value of a put option is its strike price minus the underlying assets current price. So, if the underlying securitys current price is greater than the options strike price, then the call option is in the money. On the other hand, when the underlying securitys stock price is less than the options strike price for a put option, it is in the money. When a call options current underlying securitys price is less than its strike price, it is out of the money. If a put options strike price is less than the underlying assets current price, then the option is out of the money. If an option is within 50 cents of being at the money, it is called near the money. For example, a call option is purchased with a strike price of $80.50 and the trading price of the underlying stock is $80. This call option is near the money. If there is an anticipation of a big movement, the at the money and near the money options are attractive options. The intrinsic and extrinsic value of an option together creates the price of the option. The extrinsic value can also be referred to as the time value. Time and implied volatility are important factors that determine the price of an option. Both the out of the money options and at the money options have extrinsic value but do not have any intrinsic value. Lets assume an at the money call option having a strike price of $30 is purchased for a price of $1. The extrinsic value of the options is equivalent to $1. Time and the changes in implied volatility have their impact on this value. If the volatility and the price remain steady, the extrinsic value will decrease gradually towards the date of expiry. If the price of underlying becomes greater than $30, say $34 then the intrinsic value of the option is $4. The price will be calculated as $4 plus the extrinsic value that is retained.
References for At The Money Forward Options
 http://www.businessdictionary.com/definition/atthemoneyforwardoption.html
 https://www.risk.net/definition/atthemoneyforward
 https://www.investopedia.com/terms/a/atthemoney.asp
Academic Research on At The Money Forward Options
Option valuation using the fast Fourier transform, Carr, P., & Madan, D. (1999). Journal of computational finance, 2(4), 6173. An empirical examination of the BlackScholes call option pricing model, MacBeth, J. D., & Merville, L. J. (1979). The Journal of Finance, 34(5), 11731186. Recovering probability distributions from option prices, Jackwerth, J. C., & Rubinstein, M. (1996). The Journal of Finance, 51(5), 16111631. Option pricing when the variance changes randomly: Theory, estimation, and an application, Scott, L. O. (1987). Journal of Financial and Quantitative analysis, 22(4), 419438. The pricing of options on assets with stochastic volatilities, Hull, J., & White, A. (1987). The journal of finance, 42(2), 281300. Approximate option valuation for arbitrary stochastic processes, Jarrow, R., & Rudd, A. (1982). Journal of financial Economics, 10(3), 347369. Option pricing when the variance is changing, Johnson, H., & Shanno, D. (1987). Journal of Financial and Quantitative Analysis, 22(2), 143151. Empirical performance of alternative option pricing models, Bakshi, G., Cao, C., & Chen, Z. (1997). The Journal of finance, 52(5), 20032049. The effect of executive stock option plans on stockholders and bondholders, DeFusco, R. A., Johnson, R. R., & Zorn, T. S. (1990). The Journal of Finance, 45(2), 617627. Tests of the BlackScholes and Cox call option valuation models, MacBeth, J. D., & Merville, L. J. (1980). The Journal of Finance, 35(2), 285301. Option pricing and replication with transactions costs, Leland, H. E. (1985). Option pricing and replication with transactions costs. The journal of finance, 40(5), 12831301. The constant elasticity of variance model and its implications for option pricing, Beckers, S. (1980). The Journal of Finance, 35(3), 661673.